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A M U H O D  FOR OBTAINING  ANALYTICAL  SOLUTIONS TO  THE  EQUATION 

FOR WIND-DRIVEN  CIRCULATION  IN A  SHALLOW SEA OR LAKE 

by Marv in  E. Goldstein,  Willis H. Braun,  and  Richard T. Gedney 

Lewis  Research  Center 

SUMMARY 

A technique  for  obtaining  solutions  to a certain  class of partial  differential  equations 
is introduced.  This  class of equations  includes  Welander's  equation  for  the  wind-driven 
circulation  in  shallow seas and  lakes  for a large  class of bottom  topographies.  The 
technique,  together  with  some  results  based on conformal  mapping, is used  to  reduce 
the  problems of finding  solutions  to  Welander's  equation  for a closed body of water  to  the 
problem of solving  an  ordinary  differential  equation.  To  illustrate  the  principles in- 
volved, the method is used  to  obtain  the  complete  analytical  solution  for  an  elliptically 
shaped body of water with a particular  choice of bottom  topography when the  depth is 
greater  than  one-half  the  Ekman  friction  depth. 

INTRODUCTION 

Lake  currents are very  important  in  determining what chemical and  biological 
changes  will  take  place  in a lake,  since  they  control  the  distributions of sediment  and  pol- 
lution  which  have  been  introduced  into a lake.  However,  it i s  a major  and  expensive  task 
to  measure  the  lake  currents in large  lakes  at  very  many  locations. It is, therefore, 
important  to  be  able  to  predict  these  currents  analytically.  Welander (ref. 1) derived 
the  basic  partial  differential  equation  which  describes  the  wind-driven  circulation in a 
shallow sea o r  lake. 

In this  report  a method is developed for obtaining  product  solutions  to a certain 
class of partial  differential  equations. It is shown  that, if the  function  which  describes 
the  distribution of depth of a lake  or sea belongs to a certain  quite  general class of 
functions,  then  the  technique  developed  herein  can  be  used  to  reduce  the  problem of 
solving  the  partial  differential  equation  and  boundary  conditions  which  describe  the wind- 
driven  circulation  in  the  lake  or sea to  the  problem of solving  an  ordinary  differential 



equation  and its boundary  conditions. To illustrate  the  principles involved, the  technique 
is used  to  obtain  the  complete analytical solution  for  an  elliptically  shaped body of water 
with a particular  choice of bottom  topography when the  depth is greater  than half the 
Ekman  friction  depth. 

The  report  begins by considering  the  general  canonical  form of the  second-order 
linear  elliptic  partial  differential  equation  in  two  independent  variables. It is shown  that 
if the two  combinations of coefficients of the  equation  which are known as the invariants 
have a certain  functional  form  then  the  equation  can be transformed  into  an  equation 
whose  coefficients are functions of only  one of its independent  variables.  Equations of 
this  type,  although  they are not necessarily  separable,  possess  infinitely  many  solutions 
which are products of a function of one of the  variables  with a function of the  other. 
These  solutions can be found by solving a single  ordinary  differential  equation.  Thus,  an 
infinite  family of solutions  to  the  original  differential  equation  can be  found. It is antici- 
pated that this  family is sufficiently  rich  to  be  complete.  However,  instead of pursuing 
these matters further in  this  report, a new transformation of the independent variables 
is introduced.  The  transformed  equation is again  one  whose  coefficients  depend on  only 
one of the independent  variables. A quite  general  boundary  value  problem  for  this  equa- 
tion is then  posed in the  interior of the  unit  circle  in  the  plane  for  which  the new variables 
are polar  coordinates. It is then  shown that by taking  finite  Fourier  transforms  the 
problem  can  be  reduced  to  the  problem of solving a second-order  ordinary  differential 
equation. 

Next, the  partial  differential  equation  which  describes  the  wind-driven  circulation  in 
a shallow sea or lake is introduced. A simplified  form of this  equation  which is valid 
when the  depth of the body of water is larger  than half the Ekman  friction  depth is also 
given. It is shown that whenever  the  bottom  topography of the body of water  can be de- 
scribed by a function  which  belongs  to a certain  general   class of functions  these  equations 
are of the  type  discussed  herein. It is also shown  that if, in  addition,  the  depth of the 
lake is constant  along the shore  then  the boundary  value problem  for  determining  the 
wind-driven  circulation  in the body of water can  be  transformed  into a boundary  value 
problem of the  type  discussed  above  and  can,  therefore, be reduced  to  the  problem of 
solving  an  ordinary  differential equation. The coefficients  in this equation  depend on the 
bottom  topography.  The  ordinary  differential  equation  together  with  its  boundary  condi- 
tions are solved  for a particular  choice of the bottom  topography.  Finally, the complete 
solution  to  the  problem is obtained for  an  elliptically  shaped  lake or sea. The  transfor- 
mations which are carr ied out to  obtain  the  solutions are best  accomplished by using 
certain  techniques of conformal  mapping. 

2 



SYMBOLS 

A 

a 

5, 

B 

b 

b 
- 
C 

% 

C 

C 
- 
D 

d 

HS 

h 

I 

9 

Jn 

$ 
K 

K' 

function of h/d  given by eq. (42) 

function of x, y 

defined  in  eq. (4) 

function of h/d  given by eq. (42) 

function of x, y 

defined  in eq. (4) 

function of h/d  defined  in  eq. (37) 

boundary of sea or lake 

function of x, y 

defined in eq.  (4) 

function of h/d defined  in  eq. (37) 

Ekman  friction  depth, 7r(2v/fc) 1 /2 

functions of h/d defined  in eq. (38) 

defined by eq. (17) 

function of x, y 

Coriolis  parameter 

acceleration  due  to  gravity 

defined  in  eq. (49) 

value of H at lake or sea boundary (a constant) 

depth of lake or sea 

defined in eq. (114) 

invariant of linear,  elliptic  partial  differential  equation,  defined in eq. (5) 

Bessel function of first kind of order n 

invariant of linear,  elliptic  partial  differential  equation,  defined in eq. (6) 

complete  elliptic  integral of first kind 

K(k') 

kernel  in  solution  for f"), eq. (104) 

kernel in solution  for a0(r), eq. (94) 
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k  modulus of elliptic  integral 
7 

k' f i - k  2 

L1, L2  semimajor  and  semiminor axes of ellipse 

lo, constants of integration 

p ,  

Mn 
n 

n A 

"1' "2 

$1' Q2 

91' 9 2  

P, 9 

r 

rn 
r 

S 

N 

S 

t 

U 

U 

V 

V 

W 

W 

X 

'n 

Y 

Z 

z 

4 

constants, eq. (96) 

constant 

integer 

unit  normal  to sea or lake  boundary 

x-  and  y-components of 

constants 

x- and  y-components of volume  flow 

x- and  y-components of velocity 

radial  distance in X-plane 

'nr 
dummy  variable 

length of curve  in  z-plane 

constant 

complex  variable, 5 + iq 

dependent  variable 

harmonic  function of x, y 

dependent  variable 

harmonic  conjugate  to  u 

Wronskian 

complex  function,  u + iv 

independent  variable,  coordinate of lake-surface  plane 

Bessel  function of second kind of order n 

independent  variable,  coordinate of lake-surface  plane 

vertical  coordinate 

x + iy 



=0 

@7 P 

'n 
Y 

rl 

e 
9 

h 

'n 

Pn 
V 

5 
P 

5 

'17 '2 

'0 
t 

t t  
' 1 7  '2 

cp 

W 

a particular  point  interior  to %? 

defined in eq. (51) 

Fourier  coefficient of g(r, e) ,  eq. (78) 
periodic  function of 8 

Fourier  coefficient of y(e)  

parameter in depth  distribution, eq. (84) 

displacement of lake or  sea surface 

imaginary  part of t 

angular  coordinate in X-plane 

wind direction 

complex  constant 

defined in eq. (95) 

defined in eq. (128) 

coefficient of vertical eddy  viscosity 

real part  of t 

radial  polar  coordinate 
Jl) + io@> 

linear  combinations of wind stress, eq. (36) 

x- and  y-components of wind s t r e s s  

magnitude of dimensionless wind stress 

2T'1/gd7  2''2/gd 

differentiable  function of u 

defined  in  eq. (20) 

function of u 

Fourier  coefficient of V, eq.  (27) 

complementary  function  for an 
particular  solution of differential  equation  for an 
function of x, y 

defined by eq. (102) 
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Subscripts: 

1; :} partial  derivatives 

x, Y 

Superscript: 

* 
denotes  complex  conjugate 

SOLUTIONS OF A CERTAIN GENERAL CLASS OF 

PARTIAL DIFFERENTIAL EQUATIONS 

The  most  general,  second  order,  linear,  elliptic,  partial  differential  equation  in two 
independent variables  can  always  be  reduced  to  the  canonical  form 

where  the  coefficients a, b, and c and  the  nonhomogeneous t e r m  f are functions of x 
and y. 

Any change of the  dependent  variable of the  form 

where w is any  sufficiently  differentiable  function of x  and  y transforms equation (1) 
into  an  equation of the  same type.  Thus, the function V satisfies  the  differential equa- 
t ion 

where  the  coefficients Z, b, and e a r e  related to the coefficients  a, b, and c of the 
original  equation (1) by 
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b U = b - 2 ~  
Y 

w 2 
c = c - (w=+ w ) - (am,+ b o  ) + (cox) + (o ) YY Y  Y 

It is easy  to  show (ref. 2) by eliminating  the  function w between  these  relations 
that 

- a - bx = ay - bx 
- 

Y 

Thus,  the  quantities 9 and $ defined in t e rms  of the  coefficients of any  equation of 
the  form equation (1) by 

are invariant  under a transformation of the  type shown  in  equation  (2).  They are, there- 
fore,  called  the  invariants of the  differential  equation (1) (ref. 3, vol. VI, art. 191). 

We shall now restrict  the  discussion  to  the  class of all equations of the  type in equa- 
tion (1) whose  invariants 4 and $ can  be  expressed  in  the  form 

where  u is any  nonconstant  harmonic  function of x and  y (i. e. , uxx -t U = o), $' is 
any function of u  and cp is any  differentiable  function of u.  Since  u satisfies 
Laplace's  equation,  it is easy  to see from definition (5) and  equation (7) that 

YY 

- -- - Uycp(u)] = 2 '[b + uxcp(ui) a 1  
a Y  2 ax 2 

This  shows  that  there exists a differentiable  function w of x and y which is deter- 
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mined  to  within  an  unimportant  constant by 

z = u q(u) 
Y 

b = -u,c~(u) 
- 

Hence, V satisfies the  equation 

v, + vyy + cp(4 (UYVX - UXVY) + 

Now let v be  the  harmonic  conjugate  to  u. 1 

Riemann  equations 

u = v  
X Y  

u = -v 
Y X /  

Then  u  and v satisfy  the Cauchy- 

It follows from  these  equations  that  the  Jacobian a(u, v)/a(x, y) is given by 

" ~ 

'Thus v satisfies Laplace's  equation  and  the  function \'J = u + iv is an  analytic 
function of the  complex  variable z = x + iy. 
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Since by hypothesis  u is nonconstant, it follows from  equation (12) that 

Hence, equation (10) can  be  further  transformed by changing  the  independent  vari- 
ables x and  y to  the  independent  variables u  and v.  Now it is well known (ref. 4, 
p. 187) that under  this  change of variable  the  Laplacean of V transforms as 2 

Since  the  chain  rule  implies  that 

v, = vuux + vvvx 

v = v u   + v v  
Y U Y  V Y  

it follows from  the Cauchy-Riemann  equations (11) that 

u v - u v = -vv [(ux)2 + (uy)2] 
Y X  X Y  

It is easy  to  show  that 3 

2The  convention of writing V(u, v) in  place of V(x(u, v), y(u, v)) will  be  adopted  since 

3Equations (11) imply  that x and  y also  satisfy  the  Cauchy-Riemann  equations with 
no confusion is likely  to  result  from  this. 

respect  to u  and v. Thus, = y  and yu = -x Hence, 
V  V' 

But 

Hence, 
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Upon substituting  equations (13) to (15) into  equation (10) we  find, since 
(ux) + (u ) # 0, that V must  satisfy the equation 2 2 

Y 

where 

Notice  that  the  coefficients of this  equation are functions  only of the independent 
variable  u  and not of the independent  variable v. Then  direct  substitution  shows that, 
for  every real or  complex  constant X ,  the  associated  homogeneous  equation (i. e . ,  
eq.  (16a)  with g= 0) possesses a solution of the  form 

V(u, v) = e U,(u) X V  

provided  that Ux satisfies the  ordinary  differential  equation 

Qf course,  any  linear  combination of these  "elementary"  solutions is also a solu- 
tion.  However,  the  question of whether these  elementary  solutions  form a complete set 
of solutions (i. e.,  whether  every  solution  to  eq.  (16a)  with g= 0 can be expressed as a 
linear  combination of these  elementary  solutions) is beyond the  scope of this  report.  The 
use  of linear  combinations of elementary  solutions of the  type shown  in  equation (17) to 
obtain  solutions  to  specific  boundary  value  problems  involving  homogeneous  equations 
whose  coefficients  depend  only on one of the independent  variables is illustrated  in ref- 
erences 5 and 6. Instead of pursuing  these  matters  further, we shall   turn  to a discussion 
of a,n important  special  type of boundary  value  problem  for the nonhomogeneous  equation 
(16a).  Before this is done,  however, it will be convenient to  introduce  one  further 
change of variable. 

10 
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SOLUTIONS OF A  CERTAIN TYPE OF BOUNDARY VALUE  PROBLEM 

To this end  notice  that,  since  u  and  v are conjugate  harmonic  functions,  the 
function 

is an  analytic  function of the  complex  variable 

z = x +  iy  (19) 

Hence, the  function x defined by 

X = e  W (20) 

is also  an  analytic  function of the  complex  variable z. Expressing x in  the  polar  form 

reveals that 

u = l n r  

V =  Q 

When the  change of variables  defined by equation (22) is  introduced  into  equation 
(lsa), we obtain  (where  the  convention  introduced  previously of writing q ( r )  in place of 
q(1n r) etc. is used) 

We shall now consider  the following  boundary  value  problem  for  equation (23) in the 
unit  circle of the X-plane shown in figure 1. 

11 



Figure 1. - X-plane. 

pvr + qVe + sv  = r(8) for r = 1, -rr 5 8 s rr (2 5) 

where p, q, and s are  constants  and y is a periodic  function of 8. We require  that 
V be a continuously  differentiable  function  within  the  unit  circle.  Thus, in particular 
V(0, 8) must  be  finite  and  independent of 8, and  the  following  periodicity  conditions  must 
hold: 

V(r, -a) = V(r, rr)  
O s r s l  

Ve(', -T) = V&r, 

In order to obtain a solution  to  this  problem put 

12 



Then it follows from  the  theory of Fourier series that this  transform  can be  inverted  to 
obtain 

Upon integrating by parts,  we  find that 

1 J8 Ve(r,  e)e - ingd@ = [V(r, n) - V(r, -n) + innn(r) 
2n -71 2n 1 

Hence, the first periodicity  condition in equation (26) shows  that 

.-!- f IT VQ(r, €~)e -~ 'd f3  = innn@) 
2n -a 

In a similar way it follows from  the  second  pericdicity  condition  in  equation (26) that 

1 Ln Vee(ry Q)e - in9  dB = -n 2 an(') 
2n 

We shall now show that each  function an can be determined as the solution of a 
certain  ordinary  differential  equation.  To this end, multiply  equations (24) and (25) by 
e-ine/2n and  integrate both sides of the resulting  expressions with respect  to 9 be- 
tween -n and n. We find, upon making the definitions 

r (r) -- 
n 

-in@ de  
2n 7 

} n =  0 , r t 1 , d ,  . . . 

and  using  equations (29) and (30), that stn must  satisfy the ordinary  differential  equation 

13 



'I 

subject  to  the  boundary condition 

Equation (32) and the single boundary  condition  in  equation (33) are not sufficient  to 
completely  determine an. Notice,  however, that the  origin (r = 0) is a regular  singular 
point of the ordinary  differential  equation (32) (we are, of course,  assuming  that the 
functions cp and + are bounded at r = 0).  Hence,  one of the  homogeneous  solutions  to 
this equation  will  be bounded at r = 0 while the  other  will  be unbounded  (ref. 7, pp. 101- 
108). But since V must  be bounded at r = 0, each Qn must  also  be bounded.  Hence, 
there  must  exist (for each  integer n) a finite number Mn such  that 

l im Gn(r) < Mn n = O , A ,  a, . . . 
r-0 

(34) 

and  the  solution  to  the  nonhomogeneous  equation (32) which satisfies the  boundedness 
condition in equation (34) will  involve  only  one arbitrary  constant.  This  constant is 
determined by the  boundary  condition  shown  in  equation (33). Thus,  the  Fourier  coeffi- 
cients On are completely  determined by the  differential clquations (32) together  with the 
conditions  in  equations (33) and (34). When these  solutions fin for n = 0, d ,  +2, . . . 
have  been found, they  can be substituted  into  equation (28) to  yield  the  complete  solution 
to  the boundary  value  problem  posed by equations (24) and (25). 

BASIC EQUATIONS FOR WIND-DRIVEN  CIRCULATION  IN  SHALLOW SEA OR LAKE 

The  basic  equation  governing  the  wind-driven  circulation  in a one-layer  shallow  sea 
or lake  was  derived by Welander (ref. 1). The  basic  assumptions  used in deriving  the 
equation from  the  Navier-Stokes  equations are that  the  water  density is constant,  the 
vertical eddy viscosity is independent of depth but dependent on wind velocity,  the pres- 
su re  is hydrostatic,  and  the lateral friction  and  nonlinear  acceleration  terms  can be 
neglected. A detailed  discussion of the derivation is contained  in  reference 8. Welander 
wrote the equation  with the surface  displacement as the  dependent  variable.  This  equa- 
tion  for  the  surface  displacement ( of a lake or sea of variable  depth  h is (ref. l) 

14 



where x and  y are the  horizontal,  locally  Cartesian  coordinates,  g is the  acceleration 
due  to  gravity,  d = s { .  is the  Ekman  friction depth, v is the  coefficient of vertical 
eddy  viscosity,  and f c  is the  Coriolis  parameter which  introduces  the  effect of the 
Earth's  rotation. In addition, 

where T~ and T~ are, respectively,  the x- &id y-components of the wind s t r e s s  and 

15 



The x- and y-components of the  total  volume  flow Q, and Q,, respectively, are 
given in te rms  of the  surface  displacement in reference 1 as 

(39) 
0 

-h 

The  boundary  condition  for  equation (35) is obtained by requiring that the  normal  volume 
flow  vanish at the  coasts.  Thus, for any  closed lake or sea let n1 and n2 denote  the 
x and  y  components,  respectively, of the  outward  drawn  unit  normal ii to  its boundary. 
Then  the  boundary  condition  for  equation (35) is 

at all points of the  boundary of the body of water 
It is convenient to  rearrange equation (35) to  obtain 

where 

d 
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Figure 2. - Coefficients A and B. 

The  coefficients A and B are plotted as a function of h/d in  figure 2. It is easy  to 
see  from  this  figure  that  for h/d > 1/2 to a fairly  close  approximation 

and for - > - h 1  
d 2  

B = l  

(44) 

The  quantities  2n(h/d)(l - F) and  2n(h/d)E a r e  shown as functions of h/d in figure 3. 
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Figure 3. -Coefficients  (Zxh/d)(E)  and  (27rh/d)(l - F). 
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It can  be  seen  from  this  figure  that  for h/d > 1/2 

2 n - F = 2 ~ - - 1  h  h 
d  d 

2 ~ - E  z - 1  h 
d 

Thus,  for h/d > 1/2 expression (43) for f and  equation (39) for  the  components of the 
total volume  flow can be approximated  fairly  closely by the  simpler  expressions 

and 

Q, =: @- [cr(l) - + (1 - 27r :)cy] 1 
2nfc 

for - >-  h 1  
d 2  

The  coefficients C and D of equation (37) a r e  plotted in figure 4. It is also shown  in 
this  figure  that  for h/d > 1/2 the  asymptotic  forms 

agree with  the  exact  expressions  for C and D to a fairly  close  approximation. Hence, 
equation (36) for a(') and u ( ~ )  can be  approximated by 

2T 'T1 ae-nh/d nh 
Jl) =: - sin-+- 

gd  d  gd 
for - h 1  >- 

.(2) z ___ 2nT1 ke-nh/d  cos nh d 2  
(47 1 

gd d  d 
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C 

D 

It can a 

-1. 2 ! 
.Is0  be seen  from  figure 4 t 

Exact --- Approximations for large  hld 
C = 2e*ld  sin(7ifIld). 
D = 2e*'d cos(7ifIldl - I 

Figure 4. -Coefficients C and D. 

J 
2.0 

.hat, for h/d > 1, C and D can be further  approxi- 
mated by the  limits for h/d -. m, namely, 

and 

c = o  

D -1 

with a fair degree of accuracy. Hence,  equation (36) can be replaced by the  even  sim- 
pler  expressions 
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gd I h for - > 1 

CLASS OF DEPTH  DISTRIBUTIONS  FOR  WHICH  EQUATIONS  CAN BE SOLVED 

BY  FINITE FOURIER TRANSFORMS 

We shall now suppose  that  there exists a nonconstant  harmonic  function  u of x  and 
y  and  an  arbitrary  function  H of u only such  that  the  depth  distribution  h  can  be ex- 
pressed in the  form 

This is a fairly  general  functional  form and it will  be  possible,  for  any  one of a large 
number of lakes  and seas, to  choose  the  functions  u  and H in equation (49) so that  the 
depth  distribution is approximated  fairly  closely by a relation of this  type. 

When the  relation (49) is substituted  into  equations (41) and  (42), we find  that 

qxx + Cn + 2 cY(u)ux - p(u)u [ + 2  a(u)u + p(u)u q = f [ Y X  1 C Y  X Y  1 
where 

sin H sinh H 
(CoSh H + COS H)(Sinh H - sin H) du 

p = l - s i n h H + s i n H  dH 
2 cosh  H + cos H du 

- 

Sinh  H - sin H 1 ax 

and it follows from  the  preceding  discussion  and  equations (44) that,  when h/d > 1/2, the 
coefficients a, and p are given  to a close  approximation by 
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for - >-  h 1  
1 dH d 2  p Z" 
2 d u  

(5 3) 

Now the  invariants of equation (50) satisfy  conditions (7) and (8) for all differentiable 
functions CY and p. Hence, this  equation is of the  type  discussed in the  preceding sec- 
tion. In order  to show  this,  notice  that  since 

it follows from  definitions (5) and (6) that the invariants 9 and $ of equation (50) are 

Or, since u satisfies Laplace's equation, 

du 
(54) 

Thus, the invariants 4 and $7 of equation (50) satisfy  conditions (7) and (8) with 

Equation (50) can,  therefore, be transformed  into  an  equation of the  type (16a) and, 
hence, also into an equation of type  (23).  Thus, it follows from equations (l), (9), (50), 
and (5 6) that 

w = aux 
X 
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w =Lyu 
Y  Y 

Hence, 

Therefore,  definition (51) shows  that 

sin H sinh  H 
= [(cosh H + COS H)(sinh  H - sin H) 

dH 

o r  

H + cos  H 

and  equation (38) and figure 3 show  that 

w = o  if - > -  h 1  
d 2  

Therefore, in view of equations (l), (2), (38), (41), and (49) 

Sinh H -  sin H 
cos  H + cosh  H 

and 

V = C  h 1  if -> -  
d 2  

The  introduction of equations (56) and (57) into  equation  (17a)  yields 

where,  from  equations (16b),  (52), and (58), 

sinh H + s in  H 

(59) 

(63) 
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I I I  

Upon using  the  polar  coordinates r and 8, equation (23) specializes  to 

When h/d > 1/2, it follows from  equations (53), (61), and (22), and  figure  3  that  this 
equation  becomes  approximately 

We shall now consider a lake or shallow sea bounded by a closed  curve  such as il- 
lustrated  in  figure 5. We shall  suppose that the  bottom  topography of the  basin  can  be 
approximately  described by a function of the  form (49) and that the  depth  along  the  shore 
(if? is constant. Hence, the  harmonic  function  u is constant  along %j’. Now let v  be 

Y 

Figure 5. -Lake or  sea configuration. 
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the  harmonic  conjugate  to  u  and put 

w = u + i v  

Then w is an  analytic  function of z = x + iy, and  the  function x defined by equation (20) 
is also  an  analytic  function of z. But 

Hence, 

We can,  without loss of generality,  choose  this  constant  to  be  unity.  Since  u  and  there- 
fore x is nonconstant,  the  transformation 

maps  the  region  occupied by the body of water onto either  the  interior  or  the  exterior of 
the  unit  circle of the X-plane. By replacing u by -u and  hence  w by -w, if neces- 
sary,  we can  further  suppose  with no loss  of generality  that  the mapping 

Z - X  

transforms  the  region  occupied by the body of water onto the  interior of the  unit  circle. 
Notice  that '$? is mapped  onto  the  circle.  The  region  occupied by the body of water in 
the X-plane is shown  in  figure 1. The  existence of this  function is a direct  consequence 
of the  Riemann  mapping  theorem  which  shows that every  simply  connected  region bounded 
by a closed  curve '$? can be mapped  conformally  into  the  interior of the  unit  circle. In 
addition,  this  mapping  can  always  be  chosen so that  any  given  point  in  the  interior of %? 
maps  into  the  origin of the  unit  circle  and any direction  through  the point corresponds  to 
the  direction of the  positive real axis. Once this is done  the  mapping is unique. In fact, 
if 

is any  mapping of the  interior of % into  the  interior of the  unit  circle,  and if zo is any 
point  in  the  interior of %?, then  the  mapping z - x2 defined by 
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also transforms  the  interior of $$ into  the  interior of the  unit circle but in  this case the 
point zo maps  into  the  center of the circle. 

displacement is transformed  into  the X-plane it can  be  reduced  to  solving  an  ordinary 
differential  equation. 

of the  unit  circle  in the X-plane and  that  the  shore  line  maps  into  the  unit circle itself. 
We have also shown  that  with  the  change of dependent  variable in equation (60) and  with 
the new independent  variables  taken  to  be  the  polar  coordinates (r and 0) in the X-plane, 
differential  equation (50) for the surface  displacement  transforms  into  equation (64) or, 
when  h/d > 1/2, into the approximate  equation  (65). In order  to  completely  transform 
the  boundary  value  problem  for  determining  the  surface  displacement  into  the X-plane, 
it remains only to   t ransform boundary  condition (40) into a boundary  condition on the 
unit circle in the X-plane. 

We shall now show  that  once  the  boundary  value  problem  for  determining  the  surface 

It has  been  shown  that  the  region  occupied by the body of water  maps  into  the  interior 

To  this  end  notice that, since u is constant on %, the normal 6 to %? is given by 

Hence, it follows from  the Cauchy-Riemann  conditions  that the components Of 1; Can be 
written as 

and 

Thus, it follows  from  equations (39) and (49) that  the  boundary  condition (40) Can be 
written as 
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where we have  put 

Upon using  the  Cauchy-Riemann  equations  and  the  chain  rule  for  partial  derivatives  this 
becomes 

or 

When h/d > 1/2, figure 3 shows  that  this  becomes  approximately 

It now follows from equation (60) that V must  satisfy  the  boundary  condition 

HF--HE-+--  av a V  1 dHE = d m  R e  [.(%)*I 
av au 2 du cos H + cosh H 

Finally, upon introducing  the  new  independent  variables r and e given by equation (22) 
and  recalling  that  the  boundary % maps  into  the  unit  circle  in  the X-plane, the  boundary 
condition for V on the  unit  circle  becomes 

pVr + qVe + s V  = y (e )  for r = 1, -B 5 e 5 B (68) 

where 
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P =  
Sinh H(l) - sin H(l) 
cosh  H(l) + cos H(l) 

q = H(l) - sinh  H(l) + sin H(l) 
cosh H( 1) + cos H(l) 

s = -  sin H(l)  sinh  H(l) I J 
[cos H(l) + cosh   H( l j2  dr r=l 

When h/d > 1/2,  equation (68) can  be  replaced by the  approximate  boundary  condi- 
t ion 

ppr + qp, =r(e) for r = 1, -n < e < n, - >-  h 1  
d 2  

” (7 1) 

where now 

q = p = l  H(l) - 1 1 
and 

We therefore now show  that  the  surface  displacement  for a sea or lake of arbitrary 
shape  can  be found by solving  differential  equation  (64) in the  interior of the  unit  circle 
subject  to  boundary  condition  (68). Or, if h/d > 1/2, the  surface  displacement is ap- 
proximately  obtained by solving  equation (65) in  the  unit  circle  subject  to boundary  con- 
dition (7 1). 
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SUMMARY OF EQUATIONS IN X-PLANE 

Upon comparing  equations (64) and (68) (or when  h/d > 1/2  the  approximate eqs. 
(65) and (71)) with  equations (24) and (25), we see that  this  boundary  value  problem is a 
special case of the one  solved  in  the  preceding  section. Hence, it follows from equa- 
tions (28) and (60) that  the  surface  displacement is given by 

00 

H + cos H Wn(r)ein' 
Sinh H - sin H n=-m 

or,  when h/d > 1/2,  approximately by 

where (as can  be  seen  from  eqs. (22), (32) to  (34),  (56),  and  (57))  each  function 
an(') is determined by solving  the  ordinary  differential  equation 

f 

n = 0,+1,&. . ., 
O < r < l  
" 

subject  to  the  boundary  conditions 

n = 0, 21, &, . . . 
l im Wn(r) is finite 
r-0 J 

(74) 

The  right  sides of equations (76) and (77) are given by (see eqs. (31),  (63), and (70)) 
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or ,  if h/d > 1/2 (see  eqs. (31),  (65),  and (73)), 
mate  relations 

tl hese can be replaced by the  approxi- 

i n = 0, A, +2, . . . (7 9) 

The  coefficients a and p are given by (see  eqs. (51) and (22 ) )  

a =  sin Hsinh H 
(cosh  H + cos H)(sinh  H - sin H) dr 

~. .~~ .. 

p = -  1 sinh H + sin ~~ H dH 
2 cosh  H + cos  H  dr 

~ - r -  

h 1  
p - r -  - 1  dH 1 for d > i  

2 dr  

Finally,  the  constants p, q,  and s are given by (see  eq. (69)) 
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q = H(l) - sinh H(l) + sin H(l) 
cosh H(l) + cos H(l) 

s = -  sin H(l) sinh H(l) 

[COS H(l) + cosh H(1)I2 

or when h/d > 1/2 approximately by (see eq. (72)) 

q = H(l) - 1 

p = l  1 
s = o  J 

Thus,  an  exact  solution  for  the  surface  displacement (and since all other  physical 
quantities  can be expressed  in  terms of this, an exact  solution  to  the  complete flow prob- 
lem)  can  be  obtained  once  the  ordinary  differential  equation (76) with  boundary  condition 
(77) has  been  solved.  This  solution is given  parametrically  in  terms of the  variables r 
and 8. These  parametric  variables are determined  in  terms of the  physical  variables 
x  and  y by the mapping 

Z - X  

with z = x + iy  and x = reie, which  maps  the  lake  or sea conformally  into  the  unit 
circle with a selected point  being  mapped  into the  origin.  The  coefficients of the  ordi- 
nary  differential  equation  depend upon the  particular  choice of the  function H(r). Thus, 
it is impossible  to  proceed  further in the  general  case. 

The  procedures involved  in  obtaining a complete  solution are best  illustrated by 
considering a particular  case. In order  to  simplify  the  calculations it will  be  assumed 
that h/d > 1/2 and  approximate  forms  in  equation (81) will  be  used  for  the  coefficients 
(Y and p. A particular  depth  distribution  function H of r will first be  chosen.  The 
ordinary  differential  equation  will  then  be  solved  and  the  surface  displacement  will  be 
found as a function of r and 8. A particular  shape  for  the body of water  will  then  be 
chosen.  Once this is done  the  relation  between  the  physical  variables  x  and  y  and  the 
parametric  variables r and 0 will  be found. This  will  give  the  surface  displacement 
as a function of x  and  y. 
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SOLUTION OF ORDINARY DIFFERENTIAL  EQUATION  FOR 

PARTICULAR BOTTOM TOPOGRAPHY 

We shall  consider  the  case  where  the  function H of r is given by 

where Hs is the  constant  depth at the  shore  line  and Hs + 6 is the  depth of the  deepest 
point of the  lake. Upon inserting  equation (84) into  equations (81) and (83) and  then in- 
serting  the  results  into  equations (76 and (77), we obtain  the  following  boundary  value 
problem for 52,: 

r -0 J 

Before  obtaining  the  solution  to  this  problem, we shall first show  that 

l1 ; ro(')dr = Y o  

To  this end notice  that  equations (79) imply 



I 

where  the  integration is carr ied out over  the  entire  surface of the  region  occupied by the 
body of water.  Let S denote  the  distance  measured  along  the  boundary '$? of this re- 
gion.  Then  applying  the  Divergence  Theorem  to  equation (89) yields 

Hence,  upon substituting  equations (66) into  this  relation, we obtain 



Now 

dS = (dx)2 + (dy)2 i 
and 

Hence, 

1: /dS = i p x  dxI2 + dyI2 +kx d d 2  + Ex dyI2 

Upon using  the  Cauchy-Riemann  equations (11) and  noting  that  u  u = -v v we find  that 
X Y  Y X '  

Hence, it follows from  equations (22) 

But r is constant  (and  equal to unity) on %?. Hence, 

and  equation (90) becomes 

Finally,  comparing  this  with  equation (88) shows  that  equation (87) holds. 

determined by equations (85) and (86) for  n=O. In this  case  equations (85) and (86) become 

34 

Having established  this  result, we can now proceed  to  solve  boundary value  problem 
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l im QO(r) is finite 
r-0 

Upon integrating  equation (91) we get 

where Z1 is a constant of integration. Upon substituting  this  expression  into  the first 
boundary  condition  (eq. (92)), we  find,  upon  using  equation (87), that Z1 = 0. Therefore, 

Integrating  this  with  respect  to r yields 

where Io is a constant of integration. Upon integrating by parts, we find  that 

Hence,  upon defining  the  function so of r and  p by 

for r > p 

s o ( r ;  p) = [ ln 

- 

- In  p for p > r - 

(9 3) 
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the  solution Qo(r) can  be  written as 

Notice  that this solution  automatically  satisfies the second  boundary  condition  (92). 
This would not be  the  case if equation (87) did not hold; for then Z 1  would not vanish 
and  the  solution would therefore  contain a t e rm Z1 In r which is unbounded at the 
origin. On the  other hand, the  solution  given by equation  (94) is indeterminate  to within 
an  arbitrary  constant .lo. But this is as it should  be  since  the n = 0 term  in equation 
(75) is independent of 8, and, as can be seen  from  equations (65) and (71), the  original 
boundary  value  problem  for [ involves  only  the  partial  derivatives of [ and  hence 
determines < only to  within an arbitrary  constant. 

We  now return  to  the  boundary  value  problems  determined by equations  (85)  and (86) 
and  suppose  that  n # 0. Put 

r Xnr n = A, &, . . . n J 
Then  equation (85) becomes 

2 d2an + rn - don - (n2 - r:)a = r 
n n  n = A, *2, . . . 

dr n 

But  this is just  the nonhomogeneous Bessel's  equation  which  has  the  solution 

an = an + a; h 

where a," and are the homogeneous  and particular  solutions,  respectively.  The 
homogeneous  solution is 

where Zp) for i = 1 , 2  are arbitrary  constants  and Jn and Yn are the nth-order 
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Bessel  functions of the first and  second kind, respectively.  The  Wronskian of Jn(rn) 

I I 

I I 
Hence, a particular  solution S2: of nonhomogeneous  equation (85) j is (ref. 7, p. 155) 

This  solution is bounded. To show this,  notice  that (ref. 9, pp. 15 and 62) for r + 0 

Jn(Xnr> - I n = *l, k2, . . . 

Hence, by introducing these  asymptotic  forms for Jn and Yn into  equation (98), we  find 
t  hat4 

Thus, S2:(r) and Jn(Xnr) are bounded at r = 0 and Yn(Xnr) is unbounded.  Hence, equa- 

41t is not hard  to  verify that rn(0) = 0 for all n.  Therefore, 
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tions (96) and (97) show  that  the  solution an is bounded if, and  only if, Z t )  = 0.  The 
second  boundary  condition  (86)  can  therefore  only be satisfied if 

Upon combining  equations (96) through (99) we get 

Hence 

where $(Xn) E Ed/dr)J(Xnr) 1 r=l and so forth.  Substituting  these  results into the first 

boundary  condition (86) and  using  the  recurrence  relations  for  the  Bessel  functions  to 
eliminate  their  derivatives  gives 

where 

n + i(Hs - 1) Jn(hn) - XnJn+l  1 
wn L- 1 (2) = n 1 + i(Hs - 1) yn(kn) - X ~ Y ~ + ~ ( X , )  J 

Inserting  equation (101) into  equation (100) shows  that 
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where we have  put 
/ 

Since 

and 

and  since  equations (79) show that 

r = r; -n 

it is easy  to see from equations (102) to (104) that 

and hence that 
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Therefor e, 

Upon substituting  equations (103) and (94) into  equation (75) and  using  equation (105), 
we find that the solution  for  the  surface  displacement is 

g(r, e) = z0 + 2Re yn Jn(hnr)e Re 7J 1 e ' " ' p n ( r ; P ) r n ( P )  Q P 

n= 1 n= 0 (106) 

where, upon collecting the definitions of the various  quantities in this equation,  we get 

+ i(Hs - 1) Jn(hn) - XnJn+l(Xn) 1 1 
} n = l ,   2 , .  . . 
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Finally, upon inserting  equation (49) into  equation  (47), we find  that 

in which 

H(r) = Hs + 6(1 - r ) 0 < r < 1 2 
" 

and  where we have put 

If h/d is larger  than 1, then  equations (107) may be replaced by the less exact re- 
lations 

Notice  that when these latter approximate  relations are used  for  and ( T ( ~ )  and 
when the  components of the  components of the wind stress T~ and T are  constants,  then 
(see eq. (79)) 

rn = 0 for  n = 0, 1, 2, . . . 
2 
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and  only  the first summation  appears in solution (106). 
Tn order  to  evaluate  the  integrals in equation (79), it is necessary  to know the rela- 

tion between  the  physical  coordinates x and  y  and the polar  coordinates r and 0 in 
the X-plane, and also  to  know dz/dw = X(dz/dX) as a function of x (or  equivalently as a 
function of r and e) .  These  relations  can  be  determined as soon as the function 

which  maps  the  interior of the region  occupied by the body of water in the physical  plane 
into the  interior of the unit  circle in the X-plane is selected. 

SOLUTION OF COMPLETE BOUNDARY  VALUE PROBLEM FOR ELLIPTICAL  LAKE 

OR SEA BY CONFORMAL MAPPING 

In order  to find the mapping z - x the  specific  shape of the body of water  must be 
chosen. We shall,  therefore,  suppose  that  the body of water has the  shape of an  ellipse 
whose  semimajor  axis  has  length L1 and  whose  semiminor  axis has length L2 as 
shown  in  figure 6. Tn addition, we shall assume  that  the body of water is deepest at its 
center.  Since the depth-distribution  function  (eq. (84)) has its maximum at the  center of 

Y 

/. 
= X  

Figure 6. - Shape of body of water. 
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I l l  I l l 1  I l l  

the  unit  circle,  the mapping  z - x must  be  chosen  to  map  the  center of the  ellipse  into 
the  center of the  unit  circle. For convenience  the  mapping  will  be  chosen s o  that it maps 
the  positive real axis in  the  z-plane  into  the  positive real axis  in  the X-plane. As has 
been  shown  in the  preceding  discussion,  these  conditions are sufficient  to  completely 
determine  the mapping 

Z - X  

In order  to  introduce  this mapping it is convenient to  introduce  the  parametric  com- 
plex  variable 

t = ( + i q  (109) 

The  t-plane is shown  in figure 7. Let 

K = K(k) (1 10) 

be  the  complete  elliptic  integral of the first kind of modulus  k  and  let 

K' = K(k') (111) 

where 

k' = JZ (112) 

I 
!c 
2 

K' 
" 

2 

B 

C 
K 

D 

= E  

Figure 7. - t-plane. 
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is the  complementary  modulus.  Then  the  mapping 

z = Isin - n.t 
2K 

where 

I =  L - L  d 2 2  
1 2  

transforms  the  rectangular  region in the  t-plane  shown  in  figure 7 into  the  elliptical re- 

Figure 8. - z-Plane. 

gion  (with two slits) in  the  z-plane  shown  in  figure 8. The mapping 

x = k1I2 sn(t, k) 

transforms  the  rectangular  region in the  t-plane  shown  in  figure 7 into  the  interior of 
the  unit  circle  with two slits in the X-plane shown in figure 9. Hence, the  combination 
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Figure 9. - X-plane. 

of mapping (1 15) with  the  inverse of mapping (1 13) is the mapping (ref. 10, p. 37 1) 

x = k1/2 s n [ y  sin-'(:), .] 
which transforms  the  elliptical  region with  two slits in the  z-plane (shown in  fig. 8) into 
the  interior of the  unit  circle with  two slits in the X-plane (shown in  fig. 9). Since each 
cut  in  the  z-plane  corresponds  precisely  to a cut  in  the X-plane, these  cuts  can be sealed 
and  hence,  mapping (116) is the one  with  the  desired  properties. However, it is more 
convenient to  deal  with  this  mapping  in  terms of its components  (mappings (113) and 
(115)). It is easy  to  verify  that  the  modulus k is determined  in  terms of the  physical 
dimensions of the  ellipse by Jacobi's  nome (ref. 10, p. 371) 

Upon taking  the real and  imaginary  parts of equation  (113), we find  that  the  physical 
variables x and  y are given in t e rms  of the  parametric  variables  and 77 by 
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y = I cos (& [)sinh (& q)J 

Upon taking the real and  imaginary  parts of equation (115) and  recalling  that 

we  find that the  polar  coordinates r and 8 in  the X-plane can be expressed  in  terms of 
the parametric  variables 5 and q by (ref. 11, p. 24) 

These  equations now determine the physical  coordinates x and  y  parametrically (with 
parameters t and q)  in te rms  of the polar  coordinates r and €J in the X-plane. Actu- 
ally it is possible  to  eliminate  the  parametric  variables 5 and q between  equations 
(118) and (119) and  obtain an expression  for x and  y  directly  in  terms of r and 0 but 
we shall not do  this here. 

Finally, in order  to  evaluate  the  integrals  in  equations (79), it is necessary  to obtain 
an  expression  for  dz/dw,  Because  equation (20) implies 

dz - dz 
"" 

dw dx 

it follows  that 

- = x - -  dz  dz dt 
dw dt  dx 

Upon differentiating  equations (113) and (115), we find that 

"- dz - I7r cos ($ t) 
dt 2K 
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and 

dt - 1 

dX k1/2cn(t,  k)dn(t,  k) 
" 

Therefore, 

Tn order  to  separate  the real and  imaginary  parts of the  denominator of this  expression, 
notice  that  the  addition  theorems  for  elliptic  functions (ref. 11, p. 23) show  that 

sn(t + t*) - sn(t - t*) = ~ ~ - _ _  
2 sn  t*   cn t dn t 

1 - k s n  t sn   t*  2 2  2 

Hence, because  sn(t*) = (sn  t)*, we see that 

sn(2t)  - sn(2iq) = 2(sn  t)*  cn t dn t 

1 - k21sn t l  4 

It now follows from equation (1 15) that 

1 -  " 2 X* 

cn dn fi (1 - 1x14) Fn(25,k) - sn(2iq,  k) 1 
- - " 2 X* 1 

sn(25,  k) - i tn(277, k') 

(In more  recent  references  the  symbol  sc is used  instead of the  symbol  tn  used 
here. ) Substituting  this  into  equation (120) and  using  equation (21) yields 

2  cos (& t) 
" 
dz a1 r 

dw m 1 - r  4 sn(25, k) - i tn(277, k') 
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or 

dz 
dw 
- 

COS - 5 cosh - 7 i sin - 5 sinh - 7 

sn(25, k) - i tn(2q, kt)  
(2; ) (,"K ) - (A ) (& ) O < r < l , - s < e < n  

- " 

This  expression is indeterminate on the  boundary of the  unit  circle (r = 1). It is, there- 
fore,  necessary  to  obtain an alternate  form  for  this  expression on the boundary.  To  this 
end  notice that figure 7 shows, at r = 1, 17 = *(K'/2). 

Now it follows from  the addition  theorems  for  the  elliptic  functions  that 

Since (ref. 11, p. 20) 

dn [ = l - k 2 s n 2 5  2 

and 

cn E = l - s n  5 2 2 

this  becomes 

cn 5 * i -  dn 5 * i -  -- ( ") ( ') - &(l + k  sn',)G + k  sn2 5 l + k s n  5 
l + k l - k s n  5 c n t ; d n [  r ( l + k ) i  s n 5  

2 

However,  equations (119) implies  that at r = 1 (or 17 = k(1/2)Kf) 

(1 + k)sn 5 
COS e = 

sin = * c n 5  d n 5  
l + k s n  4 2 
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Hence, 

Upon inserting  this  into  equation (120) evaluated at r = 1, we  find  that 

- dz 
dw 

and 

cosh (z) = 3 
I 

5Note that 

and 
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Hence, 

where the plus  sign  corresponds  to 8 > - 0 and  the  minus  sign is used when 8 < 0. Since 
equation (123) is to be  used  in the integral of the second  equation (79) and  since the inte- 
gration  here is with  respect  to 8, it is convenient to  have an  expression  for  the  variable 
5 as a function of 8. This  can be accomplished by solving  equation (122) for  sn 6 as a 
function of 8 to obtain 

- 

s n 5  = 
2k cos 0 

Since 5 = K at 8 = 0, it is easy  to see that the  minus  sign  must hold in  this  equation 
and  therefore that 

-1 5 = s n  
l+k-d-8 9 for r = 1 (124) 

2k cos 8 

Since 77 = +(K'/2) when r = 1, it follows from equation (1 18)  and  the  relations  imme- 
diately  preceding  equation (123) that 

x = L l s i n ( q  

for r = 1 

Thus when the wind s t r e s s  components T and T a r e  given as functions of x and y, the 
integral in the  second  equation (79) can  easily be evaluated by using  equations (67), (84), 
(107),  (108),  and (123) to (125). Similarly  the  integral  in  the first equation (79) can be 
evaluated by using  equations (84),  (107),  (108),  (118),  (119),  and  (121). These  results 
can  then  be  substituted  into  equation (106) to  determine  the  surface  displacement [ as a 
function of r and 6. Equations (1 18) and (119) will  then  give [ as a function of x and 
y  and this  completes  the  solution  to  the  problem. 

1 2 

Since  the  geometry  chosen  does not represent  any  particular lake or sea, it will not 
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be worthwhile to   car ry  out a complete  parametric  study  for  various  functional  forms of 
the wind stress. Instead we shall only  obtain  numerical  results  for  the  simplest  case 
which illustrates all the  features involved.  Thus,  we shall suppose  that  h/d > 1 and 
that  approximate  equation (49) can be used  for C F ( ~ )  and C F ( ~ ) .  We shall also sup- 
pose  that  the wind stress is constant  and is given  in  dimensionless  form by 

t t  71 = To COS 9 

where T~ is the  constant  dimensionless  magnitude of the  wind-stress and 9 is the  angle 
between  the wind stress and  the  x-axis.  Then  in  this  case, as indicated  previously, 
rn = 0 for  n = 0, 1,  2, . . . and it follows from  equations (48),  (67),  (79),  (106),  (108), 
(123), and (124) that  the  solution for the  surface  displacement is 

t 

r - 5 ,  1 

t 2(1 + k)K 
ToL1 

- ~- Re L- ine 

n= 1 

where 

= sn-lt + k - 4 1  + k2 - 2k cos 2 8  
7 

2k cos 6 

DISCUSSION 

A method  for  obtaining  solutions  to a certain  class of partial  differential  equations is 
introduced.  This  class of equation  includes  Welander's  equation  for  the  wind-driven  cir- 
culation  in  shallow seas and  lakes  for a large class of bottom  topographies.  The  tech- 
nique,  together  with  some  results  based on conformal  mapping is used  to  reduce  the  prob- 
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lem of finding  solutions  to  Welander's  equation  for a closed body of water  to  the  problem 
of solving  an  ordinary  differential  equation  which  depends on a parameter. An approxi- 
mate  form of this  ordinary  differential  equation  which is valid  when the  depth of the body 
of water is larger  than  one half of the  Eckman  depth is solved  for a particular  bottom 
topography.  This  solution  takes on a particularly  simple  form when the wind stress is 
constant  and  the  depth of the  lake is greater  than  the  Eckman  depth. 

The  following  discussion  concerns  the  application of this  solution  to an elliptically 
shaped body of water  with  an  approximately  paraboloidal  bottom  topography  whose  depth 
is larger  than the Eckman  depth  and  for  which  the wind stress is constant. No attempt 
is made  to conduct a parametric  study  to  demonstrate  the effect of the  governing  dimen- 
sionless  parameters  since  this would be of practical  value only if a particular lake or sea 
were being  studied. For this reason  numerical  results  will only  be  given for  the  surface 
displacement of the  surface of the body of water.  All  other flow quantities of interest  can 
easily  be  expressed  in  terms of this  quantity by using  the  results  given  in  reference 1. 

The  surface  displacement of the body of water is given in t e rms  of the  intermediate 
variables r and Q by equations (127) and  (128) where  the  modulus k of the  complete 
elliptic  integrals is determined  from  equation (117) and the parameters cdr) and X, are 
given by equations (102) and (95), respectively.  Since  the  physical  coordinates x and  y 
of the  horizontal  plane of the body of water are related  to  the  intermediate  variables r 
an'd Q parametrically by equations (1 18)  and (1 19),  the  surface  displacement is known as 
a function of x  and  y.  These  results involve the physical  parameters L2/L1, Hs, 6, 
and 9. The first three of these  parameters  characterize  the  geometry of the body of 
water  and  the last one is the  direction of the wind stress. All  the  numerical  calculations 
were  performed  for Hs = 5  and 6 = 4. The  results are shown as isometric  projections. 
The  results of the  calculations  for 9 = 0 (i. e . ,  when the wind direction is along  the  ma- 
jor axis of the  ellipse) are shown in figure 10.  The figure  shows  that the water  piles up 
downwind and  the  surface is s-shaped  across  the wind direction.  The  results  for 
9 = 45' and 9 = 90' are shown  in figures 11 and 12, respectively. In all three figures 
the  ratio L2/L1 of the semiminor  to  the  semimajor axis of the  ellipse is taken as 2/3. 
The  effect of fixing 9 at 45' and  changing  L2/L1 to 1/2 is shown  in figure 13. It can 
be seen  from  these  figures  that the amount of surface  displacement is essentially  deter- 
mined by the  distance  across  the  lake in the  direction of the wind. The  greater  this  dis- 
tance,  the  larger  the  surface  displacement. 
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I 

Figure 10. - Surface displacement of an  elliptic lake. Ratio of minor to major axis. L$L1 = 2/3; wind  parallel to major  axis (3 = 0); 
6 = 4 ;  H s =  5. 

I H  Wind 

Figure 11. - Surface displacement  of an  elliptic lake. Ratio  of  minor  to  major axis, L$L1 = 2/3; wind  at 4 9  to axes ( 0  = 45”); 
6 -  4; H,= 5. 
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Figure 12. - Surface  displacement  of an  ell iptic lake. Ratio  of  minor  to  major axis, L$L1 = 2/3; wind  parallel  to  minor  axis 
( 3 90"); 6 4; H, = 5. 

4 
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CONCLUSIONS 

A  technique  for  obtaining  solutions  to a certain  class of partial  differential  equations 
is given.  This  technique is applied  to  the  equation  which  describes  the  wind-driven cir- 
culation  in a shallow sea o r  lake. It is shown that for a large  c lass  of depth  distributions 
this  technique  can be used  to reduce this  partial  differential  equation  to  an  ordinary dif- 
ferential  equation.  Complete  analytical  solutions are obtained  for a specific  geometry of 
the  lake  or sea. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, June 15, 1970, 
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